
virtualenv

Python Virtual Environment Setup

To have a good control over pre-requisite library modules for our software, we run in a python virtual
environment.

That means that whenever you want to use or maintain the software you must first activate that virtual
environment like this: (replace 'generic' with an existing project environment name)

source ${HOME}/venv_generic/bin/activate

Once active you can deactivate it like this:

deactivate

Installation
We are going to install any non pip packages we rely on, if any, first, then install virtualenv. Then create a
virtual environment. Then activate it.

Install virtualenv itself.

sudo apt update
sudo apt install virtualenv

Install a .rst to .pdf converter.

snap install rst2pdf

Create a virtual environment for the project

virtualenv --prompt venv_generic ${HOME}/venv_generic

Then activate the created environment

source ${HOME}/venv_generic/bin/activate

Now we install modules our project will need, first pip itself and the tools it needs.

python3 -m pip install -U pip
pip install wheel
pip install setuptools
pip install twine

We are using flit for building and installling our software.

pip install flit

Saving prerequisites
We keep our dependencies under version control, so each time we install more components we need to
refresh our requirements file.

pip freeze >${HOME}/allrepos/generic/requirements.txt

Reinstalling
Later, when we are migrating to a different workstation, or for some reason need to restablish our project
from scratch, we can install all our prerequisites in one shot instead of installing items one at a time like we
did above.

pip install -r ${HOME}/allrepos/generic/requirements.txt

Automatic activation
In many cases we want to activate a project whenver we log in, so lets do that automatically.

Append this snippet to the end of our "${HOME}/.bashrc" file.

#
Added for automatic vitual environment activation
#
if [-f "${HOME}/venv_generic/bin/activate"] ; then
 source ${HOME}/venv_generic/bin/activate
fi

Good ignoring keeps flit happy
Flit works nicely with git, but it is quite strict, so we must ignore all irrelevant files properly or flit will reject
builds.

Below is a good start for a project ".gitignore" file:

*~
\#*\#
dist/*
pdf_docs/*
html_docs/*

	Installation
	Saving prerequisites
	Reinstalling
	Automatic activation
	Good ignoring keeps flit happy

